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Abstract

Microtubules, the most rigid components of the cytoskeleton, can be key transduction
elements between external forces and the cellular environment. Mechanical forces induce
microtubule deformation, which is presumed to be critical for the mechanoregulation of
cellular events. However, concrete evidence is lacking.

In this work, with high-speed atomic force microscopy, they unraveled how microtubule
deformation regulates the translocation of the microtubule-associated motor protein kinesin-
1, responsible for intracellular transport.

Their results show that the microtubule deformation by bending impedes the translocation
dynamics of kinesins along them.

Molecular dynamics simulation shows that the hindered translocation of kinesins can be
attributed to an enhanced affinity of kinesins to the microtubule structural units in
microtubules deformed by bending.

This study advances our understanding of the role of cytoskeletal components in
mechanotransduction
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Introduction

Living organisms are exposed to exogenous and endogenous
forces and these forces affect their development and
remodeling

protofilament

Microtubules are the most rigid cytoskeleton composed of
protofilaments of tubulin dimers

Microtubules are used as roads for the transport by kinesins w O _ag
and dyneins a%Ce 04 tubulin dimer

It was known that the deformation of microtubules affects
kinesin-driven and dynein-driven transport

However, it was unclear how the microtubule deformation
regulates transport



Introduction

In this study, they investigated kinesin translocation along |aserdiode¥
deformed microtubules using high speed atomic force

Microsco py (HS—AFM) excitation piezoelectric .

They found that the bending of microtubules hindered the
motility of kinesin

photodetector

cantilever

They found that the retardation of kinesin translocation to be
caused by both tension and compression

Also, even along the central region of microtubule where
neither tension nor compression is expected, kinesin slowed
down

They confirmed that this regulation of kinesin motility Lorena Redondo-Morata (2018)
attributed to the altered affinity of kinesins to deformed

tubulin dimers by molecular dynamics (MD) simulation High Speed Atomic Force Microscopy (HS-AFM)
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These results suggest that the mechano-responsive role of
microtubules in cellular mechanotransduction



(D) Visualization of microtubules free from lattice defects with HS-AFM

(2 Observation of kinesin translocation along straight and bent
microtubules

@ Microtubule curvature-dependent behavior of kinesin translocation
@ The effect of microtubule deformation on kinesin binding affinity

®MD simulations of the effect of the microtubule deformation on the
kinesin-tubulin interaction



(D Visualization of microtubules free from lattice defects with HS-AFM
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(2 Observation of kinesin translocation along straight and bent microtubules

Movie S1 Movie S2

Kinesin motility along straight microtubule Kinesin motility along bent microtubule
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Kinesins on bent microtubules are slower



(2 Observation of kinesin translocation along straight and bent microtubules
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Mostly they ran along microtubules without sidestepping



(2 Observation of kinesin translocation along straight and bent microtubules
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region 1,2 and 3 were found always slower



(2 Observation of kinesin translocation along straight and bent microtubules
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3 Microtubule curvature-dependent behavior of kinesin translocation
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Kinesins slow down in microtubule curvature-dependent manner

The shape of the graph is expected to reflect the exponential increase of the time for ATP/ADP cycle



@ The effect of microtubule deformation on kinesin binding affinity

Table 1. Summary of the kinetic parameters. kop, koff, and Kg of kinesin binding to the straight and bent microtubules. The values are mean + SE (see also data S4).

Microtubule feature kM um™ s7T) kost (s7V) K4 (M pum)
Straight 39,026 + 32 096+0.12 (246 +£0.31) x 10°
Bent 59,801 +186 0.61+0.07 (1.02+0.11) x 107

Kd — koff/kon

Kinesins on bent microtubules are less likely to detach from microtubules



(B MD simulations of the effect of the microtubule deformation on the
kinesin-tubulin interactions
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The interaction energy between a kinesin and a tubulin dimer is larger at deformed states



They found that the bending of microtubules hindered the motility of
Kinesin

They found that the retardation of kinesin translocation to be caused by
both tension and compression

Also, even along the central region of microtubule where neither tension
nor compression is expected, kinesin slowed down

They confirmed that this regulation of kinesin motility attributed to the
altered affinity of kinesins to deformed tubulin dimers by molecular
dynamics (MD) simulation



Discussion

This work offers evidence that microtubules can serve as a mechanosensor and can
help to understand how microtubules regulate intracellular transport in adverse
environments by absorbing mechanical forces

This study can also help to understand the role of mechanical forces in regulating
interactions between a microtubule and its associated proteins.

They demonstrated for the first time how this altered affinity regulates intracellular
transport

It is expected to help to clarify the mechanism of some diseases related to
impairment of intracellular transport

A change in the interaction energy between microtubules and its associated motor
protein by deformation of microtubules may offer itself as the starting point to an
understanding of how microtubules serve as mechanotransducers in cells
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