硫化水素の 産生過剰が 統合失調症 に影響 ## Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology Masayuki Ide^{1,2,†}, Tetsuo Ohnishi^{1,†}, Manabu Toyoshima¹, Shabeesh Balan¹, Motoko Maekawa¹, Chie Shimamoto-Mitsuyama¹, Yoshimi Iwayama^{1,3}, Hisako Ohba¹, Akiko Watanabe¹, Takashi Ishii⁴, Norihiro Shibuya^{5,6}, Yuka Kimura^{5,6}, Yasuko Hisano¹, Yui Murata⁷, Tomonori Hara^{1,8}, Momo Morikawa⁹, Kenji Hashimoto¹⁰, Yayoi Nozaki¹, Tomoko Toyota¹, Yuina Wada^{1,11}, Yosuke Tanaka⁹, Tadafumi Kato¹², Akinori Nishi¹³, Shigeyoshi Fujisawa¹⁴, Hideyuki Okano¹⁵, Masanari Itokawa¹⁶, Nobutaka Hirokawa⁹, Yasuto Kunii^{17,18}, Akiyoshi Kakita¹⁹, Hirooki Yabe¹⁷, Kazuya Iwamoto⁷, Kohji Meno⁴, Takuya Katagiri²⁰, Brian Dean^{21,22}, Kazuhiko Uchida²³, Hideo Kimura^{5,6} & Takeo Yoshikawa^{1,*} ## Abstract Article Mice with the C3H background show greater behavioral propensity for schizophrenia, including lower prepulse inhibition (PPI), than C57BL/6 (B6) mice. To characterize as-yet-unknown pathophysiologies of schizophrenia, we undertook proteomics analysis of the brain in these strains, and detected elevated levels of Mpst, a hydrogen sulfide (H₂S)/polysulfide-producing enzyme, and greater sulfide deposition in C3H than B6 mice. *Mpst*-deficient mice exhibited improved PPI with reduced storage sulfide levels, while *Mpst*-transgenic (Tg) mice showed deteriorated PPI, suggesting that "sulfide stress" may be linked to PPI impairment. Analysis of human samples demonstrated that the H₂S/polysulfides production system is upregulated in schizophrenia. Mechanistically, the *Mpst*-Tg brain revealed dampened energy metabolism, while maternal immune activation model mice showed upregulation of genes for H₂S/polysulfides production along with typical antioxidative genes, partly via epigenetic modifications. These results suggest that inflammatory/oxidative insults in early brain development result in upregulated H₂S/polysulfides production as an antioxidative response, which in turn cause deficits in bioenergetic processes. Collectively, this study presents a novel aspect of the neurodevelopmental theory for schizophrenia, unraveling a role of excess H₂S/polysulfides production. **Keywords** energy metabolism; epigenetics; hydrogen sulfide and polysulfides; prepulse inhibition; proteomics Subject Categories Chromatin, Transcription & Genomics; Neuroscience DOI 10.15252/emmm.201910695 | Received 1 April 2019 | Revised 25 September 2019 | Accepted 1 October 2019 | Published online 28 October 2019 EMBO Mol Med (2019) 11: e10695 See also: M Simonneau (December 2019)